ИССЛЕДОВАНИЕ ВЛИЯНИЯ МАЛОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ НА ЭФФЕКТ ЗАКАЛКИ СПЛАВА АК6

Манюков А. В.1
Научные руководители: Герасимов С. А., д. т. н., профессор, Овечкин Б. Б., к. т. н., доцент
Московский государственный технический университет им. Н. Э. Баумана, 105005, Россия, г. Москва, ул. 2-я Бауманская, 5
Томский политехнический университет, 634050, Россия, г. Томск, пр. Ленина, 302
E-mail: punav007@mail.ru

Введение
Стареющие алюминиевые сплавы имеют огромное значение в современном мире. Их широкое применение обусловлено сочетанием прочности и относительно малого веса. Многие ученые ставили перед собой задачу — выяснить физическую природу явления старения. Особый интерес вызывает характер превращений при старении и атомно-структурный механизм этих превращений, особенно в сложных много-компонентных сплавах. Создание новых технологий обработки, для сложно-обработываемых деформируемых алюминиевых сплавов типа Д16, AK6, B95 их освоение в производственных условиях открывают возможность в широком формате избежать брака на предприятиях страны. В частности эта задача актуальна для обработки деталей, изготовленных в «КБ «ТочМаш» им. А. Е. Нудельмана.

Материалы и методики исследования
От круглого профиля отрезались цилиндрические образцы, которые впоследствии разрезались на сегменты. Затем верхнюю поверхность подвергали шлифованию, полирования и последующему травлению.

![Image](image.png)

Рис. 1. Внешний вид заготовок. Поверхность п.1 подвергалась шлифованию, полировка и травлению.

Основным объектом исследования являлся сплав системы Al-Cu-Mg-Si состава: (1,8…2,6)% Cu; 0,489% Mg; 0,777% Si (метод определения: магния ГОСТ 11739.11 и кремния ГОСТ 11739.7).

Цилиндрические образцы для механических испытаний изготавливали в соответствии с ГОСТ 1479-84. Деформированный слой (рис.1 поверхность п.1), возникший в результате резки, удаляли механической шлифовкой с последующим поли-
нической обработки непосредственно после закалки.

При холодной деформации каждое зерно испытывает воздействие соседних зерен, заставляющее его изменять свою форму в соответствии со схемой деформации всей детали. Закономерно предположить, что даже небольшие степени деформации влекут за собой некоторое повышение внутренней энергии системы, которое должно сыграть свою роль в активизации процессов протекающих в рамках последующего старения слава.

Рентгеноструктурные исследования сплава АК6 показали, что деформация на 2% от первоначальной высоты образца проявляется в изменении кривых (рис.2). Хорошо видно смещение линий и изменение интенсивностей, что является следствием трансформации внутреннего структурного состояния.

![Rens](image)

Рис.2. Рентгенограммы сплава АК 6.

Деформация сжатием обусловливает увеличение концентрации компонентов [4] и как следствие увеличение внутренних напряжений (рис.2, кривая 3), впрочем, как и неравномерность распределения уплотненных сегрегаций в объеме. Таким образом, очевидно, процесс холодного деформирования способствует протеканию при старении процессов распада и выделения наравне с облегчением диффузионных процессов.

Выводы

Процесс термомеханической обработки (ТМО), заключающийся во введении между операциями закалки и старения деформационной стабилизации посредством прессования позволяет добиться отличных результатов за счет дополнительного влияния деформирования на структуру закаленного сплава.

Создание данной технологии направлено на интенсификацию процессов, протекающих при старении. Степень перехода упрочняющих компонентов в твёрдый раствор при закалке может быть не достаточным, следовательно, данный аспект может послужить серьёзным препятствием на пути создания такой процентной доли локальных несовершенств кристаллической решетки твердого раствора, которая бы способствовала получению интересующего нас состояния материала после старения. Вызывает интерес структура, реализация связей в которой при старении приводит к появлению конфигураций атомов с ближним порядком (молекулярных комплексов). Поэтому совместное действие оптимального режима закалки и деформирования должно способствовать получению высоких физических и механических характеристик, удовлетворяющих требованиям современно-го машиностроения.

Список используемой литературы:

3. Ю.А. Багаирский. Рентгенографическое исследование старения дуралиюмина. Автореферат диссертации. 1951г.
4. С. Т. Конобеевский и Я. Селисский. О расширении дебай-шерреровских линий на рентгенограммах металлов при холодной обработке и отжиге. М: ГИНЦВЕТМЕТ, 1933. - 248с.